It's time to take the psychology of biological time into account: speed of driving affects a trip's subjective duration
نویسنده
چکیده
The last decades have seen a surge in research into interval timing (for recent reviews, see Merchant et al., 2013; Wittmann, 2013; Allman et al., 2014; van Rijn et al., 2014), with some work focussing on the more abstract mechanisms underlying interval timing (e.g., Taatgen et al., 2007) or the role of cognitive faculties such as memory and decision processes on interval timing tasks (e.g., Taatgen and van Rijn, 2011; Shi et al., 2013), but a large proportion of the work focuses the neural substrates of human (e.g., Kononowicz and van Rijn, 2011; Wiener et al., 2012; Kononowicz and Van Rijn, 2014) and animal (e.g., Díaz-Mataix et al., 2013; Bartolo et al., 2014; Cheng et al., 2014) timing processes. Based on this work, we are getting closer to unraveling the biological mechanisms underlying interval timing. Interestingly, although an accurate sense of the passing of time at short timeframes (e.g., less than a couple of seconds) is an important building block in many cognitive tasks, many papers— including some of our own—still use rather hackneyed examples such as the timing involved in deciding whether to brake when a traffic light turn yellow to stress the importance of interval timing in every days tasks. Although timing is obviously involved in such real world tasks, the complexities of these tasks are far removed from the simple paradigms using in interval timing studies. For one, in many real-world timing tasks, the temporal stimulus has a direct relevance for the person doing the timing, whereas in most laboratory experiments the participant is asked to time an external stimulus— a distinction which can be compared to a first vs. a third-person perspective on time. These discrepancies make it difficult to generalize from the highly specific experiments in the lab to the psychology of timing as observed in the real world (see also Matthews and Meck, 2014), with a possible exception for studies on target interception (for a review, see Merchant and Georgopoulos, 2006). Although literature does list a number of papers in which interval timing aspects are being studied in the real world (e.g., Ten Bosch et al., 2005; Miller and Fu, 2007), those studies are often not focused on the mechanisms underlying timing, or require large databases with naturalistic data. To ensure that interval timing does not follow the path of some other fields of science— where no one apart from the researchers active in that field remember why a particular phenomenon was interesting enough to study—we should study interval timing not just in artificial tasks that are specifically created to test a particular phenomenon, but also in tasks that have a clear analog to complex, real-life interval timing tasks. To demonstrate the viability of this approach, below I will discuss a simple experiment based on a prototypical interval-timing paradigm (e.g., Kononowicz and Van Rijn, 2014) set in the context of the evaluation of the speed of a car from a first-person perspective (e.g., as driver or co-driver). Theories of human time perception typically assume a clock that provides temporal information to decision processes (van Rijn et al., 2011). Although the exact formulation of this clock is still subject of discussion (see for a review, van Rijn et al., 2014), most theories assume that the information emitted by this clock is relatively stable over time. However, both endogenous (e.g., neurochemical fluctuations, Coull et al., 2011) and exogenous manipulations (e.g., contextual changes, van Rijn and Taatgen, 2008; Lui et al., 2011; or manipulations of expectancy, e.g., Tse et al., 2004; see Grondin, 2001, for an extensive review) affect interval timing. For example, if the display duration of a moving stimulus has to be estimated, a positive correlation is found between speed and the estimated display duration (e.g., Brown, 1995; Kline and Reed, 2012, see also Roelofs and Zeeman, 1951–1952), if a stimulus is perceived to move toward an observer it is perceived as having a longer duration than when the same stimulus is presented as a static image or is perceived to be moving away (e.g., van Wassenhove et al., 2008; New and Scholl, 2009; Wittmann et al., 2010), or if the environment in which a temporal stimulus is presented moves faster, the duration of the temporal stimulus is overestimated (e.g., Mate et al., 2009) compared to static or slower moving environments. The interpretation of types of studies into the subjective dilation of time can be roughly summarized as faster movement, or movement toward rather than moving away from the observer, yielding a faster ticking internal clock, resulting in the subjective duration of the stimulus lengthening. These effects are most likely driven by early visual processes that detect
منابع مشابه
A New Heuristic Algorithm for Time-cost Trade-off Problem Taking into Account Monetary Value
Time-cost trade-off is one of the most important subjects in project management and of interest to contractors. The goal of time-cost trade-off is sensivity analysis of project costs to changes in activity duration in order to obtain the best combination of activity duration decrease, in a way that the sum of project costs is minimized. In the heuristics presented in this area, time crashing is...
متن کاملA New Heuristic Algorithm for Time-cost Trade-off Problem Taking into Account Monetary Value
Time-cost trade-off is one of the most important subjects in project management and of interest to contractors. The goal of time-cost trade-off is sensivity analysis of project costs to changes in activity duration in order to obtain the best combination of activity duration decrease, in a way that the sum of project costs is minimized. In the heuristics presented in this area, time crashing is...
متن کاملDesign, Development and Test of a Practical Train Energy Optimization using GA-PSO Algorithm
One of the strategies for reduction of energy consumption in railway systems is to execute efficient driving by presenting optimized speed profile considering running time, energy consumption and practical constraints. In this paper, by using real route data, an approach based on combination of Genetic and Particle swarm (GA-PSO) algorithms in order to optimize the fuel consumption is provided....
متن کاملالگوریتم جدیدی برای تحلیل حساسیت مسیر بحرانی در شبکه های پرت با درنظر گرفتن ریسک های موجود در پروژه
Taking into account, the uncertain time duration for each activity in a pert network, we would need to accept the notion that the critical path of the project could also vary a number of times during its execution. If these variations take place frequently during the project in an unpredictable manner, it could endanger the efficient management of that project, and in addition to lengthening th...
متن کاملA real-time recursive dynamic model for vehicle driving simulators
This paper presents the Real-Time Recursive Dynamics (RTRD) model that is developed for driving simulators. The model could be implemented in the Driving Simulator. The RTRD can also be used for off-line high-speed dynamics analysis, compared with commercial multibody dynamics codes, to speed up mechanical design process. An overview of RTRD is presented in the paper. Basic models for specific ...
متن کامل